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Gradient-based adaptation of continuous dynamic model structures
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A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed
model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting
its individual components in symbolic form. A key contribution of this work is its introduction of the model’s parameter
sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural
sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally
expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in sym-
bolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its
potential utility.

Keywords: system identification; gradient-based adaptation; dynamic modelling; symbolic regression; evolutionary
programming

1. Introduction

A major goal of science is to characterise analytically the
dynamic behaviour of natural phenomena associated with
biological, ecological, social, and economic systems, as
well as the dynamics of artefacts such as robots, aircraft,
and wind turbines. Dynamic behaviours are usually char-
acterised by differential equations which in aggregate rep-
resent the dynamic model of the system. Dynamic models,
in turn, are the essence of the virtual environments that are
used to estimate/predict system behaviour for policy deci-
sions, design, optimisation, control, and/or automation.

Dynamic models are preferably formulated according
to first principles, to embody the knowledge of the sys-
tem. However, first-principles models are usually too crude
and incomplete to fully characterise the non-linear dynam-
ics of the system, as represented by process observations.
In regress, first-principles models are often abandoned in
favour of empirical models such as neural networks (Hertz,
Krogh, & Palmer, 1991; Narendra & Parthasarathy, 1990,
1991), fuzzy logic (Zhu, Danai, & McCormick, 1994),
or non-linear autoregressive moving average (NARMAX)
models (Billings, 2013), among others, which offer the
structural flexibility for adaptation to accommodate the
measured observations. Although these empirical models
provide an effective means of estimation/prediction, they
have the major drawback of lacking transparency about the
physics of the process (Billings, 2013). This lack of trans-
parency, in turn, obscures the knowledge of the process ac-
quired through adaptation. Ideally, the model of the process

∗
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should benefit from the available knowledge of the process,
to minimise adaptation, and be intelligible so as to inform
the acquired knowledge attained through adaptation.

Attempts have been made to incorporate the available
knowledge of the process in fuzzy (Mitra, Konwar, & Pal,
2002) or neural network (Towell & Shavlik, 1994) models.
Two examples are the radial basis networks of Gan and
Danai (2000, 2001) that are structured according to the sys-
tem’s linear first-principles model and subsequently adapted
to improve the accuracy of the model’s output relative to ob-
servations. Another example is the structure-based neural
network of Jammu, Danai, and Lewicki (1998a, 1998b) for
fault diagnosis of gearboxes wherein the weights are speci-
fied according to the relationship between measured inputs
and faults as well as the proximity of sensors to the gear-
box components. But these solutions, although they rely on
the available knowledge of the process to formulate their
initial model, fail to convey the improved knowledge at-
tained through adaptation. Often the distributed form of
these models precludes intelligibility of their embedded
knowledge.

In order to improve the intelligibility of adapted mod-
els, empirical models in the form of symbolic equations can
be formulated by symbolic regression (Bongard & Lipson,
2007; Koza, 1992; La Cava, Spector, Danai, & Lackner,
2014; Schmidt & Lipson, 2009). In symbolic regression,
the process variables, inputs, and parameters (constants)
are treated as symbols and integrated as blocks to form
candidate model structures. Free of restrictions on the form

C© 2015 Taylor & Francis
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250 W.G. La Cava and K. Danai

(structure) of candidate model, the search is conducted by
genetic programming for models having best-fit outputs
to the measured observations (Koza, 1992). Even though
symbolic regression is computationally expensive, requir-
ing anywhere from thousands to billions of evaluations, it
offers a viable approach to modelling poorly understood
systems that cannot be readily defined by first-principles
models. By the same token, the unrestricted structure of
symbolic regression renders it unsuitable for application
to better understood systems because of the inherent diffi-
culty of seeding it with starting models (Schmidt & Lip-
son, 2009). In the absence of a presumed model structure,
symbolic regression often yields illegible, albeit accurate,
models which do not convey any of the physics of the pro-
cess.

The model structure adaptation method (MSAM) pro-
posed in this research contrasts the unrestricted nature
of symbolic regression by considering candidate models
closely tied to the starting model that are improved by lo-
calised gradient-based adaptation. As such, MSAM is de-
signed to remedy the shortcomings of symbolic regression
in application to well understood systems for which first-
principles models are available. It achieves this by adjusting
the individual components of the original model so as to
preserve the model’s structural integrity, hence, its intel-
ligibility. A key contribution of MSAM, that enables the
implementation of gradient-based adaptation, is its use of
the model’s parameter sensitivity as the measure of ‘model
difference magnitude’. This measure is used to scale the
structural sensitivities such that they will remain robust to
parametric error during adaptation.

2. Problem formulation

The underlying assumption of symbolic regression is that
there exists an analytical model of the system that would
generate the measured observations y(tk) at the sample times
tk = t1, . . ., tN under the input, u(t), as

y(tk, u) = ŷ(tk, M∗,�∗, u) + ν; k = 1, . . . , N (1)

where ŷ is the modelled output, ν represents measure-
ment noise in y, M∗ denotes the correct model form, and
�∗ = [θ∗

1 , . . . , θ∗
Q]T is the vector of model parameters. We

consider the model to consist of the weighted sum of indi-
vidual components Mi, as

M� =
Q∑

i=1

θiMi = �T M (2)

where M = [
M1, . . . ,MQ

]T
and each component Mi is the

product of any combination of state variables, xi, included
in the state vector x = [x1, . . . , xn]T , and/or inputs, ui, in
the input vector u = [u1, . . . , um]T . For instance, consider

the true model of the harmonic oscillator

M∗
� : ẍ = − c

m
ẋ|ẋ| − k

m
x3 + 1

m
u(t) (3)

where x denotes its displacement (that is measured), ẋ is
its velocity, ẍ is its acceleration, u(t) is its input excita-
tion, and m, c, and k denote its mass, damping coefficient,
and spring constant, respectively. This true model con-
sists of three components; i.e., M∗ = [

M∗
1 , M∗

2 , M∗
3

]T =[
ẋ|ẋ|, x3, u(t)

]T
where the true parameter values �∗ =[

θ∗
1 , θ∗

2 , θ∗
3

]T = [− c∗
m∗ , − k∗

m∗ ,
1

m∗
]T

. Given that the mea-
sured outputs have the quality and breadth to characterise
the dynamics of the process, the fidelity of the model can be
evaluated by how closely the model outputs match the ob-
servations (Dunstan & Bitmead, 2003; Popper, 1959, 1994).

The most common measure of closeness of the model is
the magnitude of the prediction error between the process
observations, y, and model output, ŷ, defined as

ε(tk) = y(tk) − ŷ(tk) = ŷ(tk, M∗,�∗, u)

−ŷ(tk, M̂, �̃, u) + ν (4)

where M̂ denotes the candidate model form and �̃ the
vector of nominal parameter values.

In traditional system identification, model formulation
and parameter estimation are performed separately. Once
the model form is assumed correct; i.e., M̂ = M∗, the model
parameters, ascertained identifiable (Ljung & Glad, 1994),
are estimated by minimising a cost function, V, as

�̂ = arg min
�

V = arg min
�

N∑
k=1

L (ε(tk)) (5)

where L is a scalar-valued (typically positive) function, such
as the square function in non-linear least-squares (NLS).
However, when the model form is incorrect (i.e., M̂ �= M∗),
parameter estimation either fails or leads to erroneous val-
ues associated with an inordinate prediction error, indicat-
ing the model mismatch and the need for a better model
structure. Therefore, structural accuracy of the model tran-
scends its parametric accuracy, hence the focus of adapta-
tion in MSAM.

The common choice for estimating the model output(s)
is numerical integration (i.e., simulation) of state variables.
When using different model structures in simulation, the
candidate models’ output is a function of state variables
and inputs, so it varies considerably by even minute changes
in the model structure. For instance, because in simulation
the rate of output change will depend on the previous out-
puts, the time span of the transients may change, making it
difficult to compare simulated outputs of different models.
Therefore, simulation-based estimation of model outputs
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with different model structures, aside from its computa-
tional demand and error propagation tendency, is undesir-
able for its ambiguity about the model quality.

The alternative to numerical integration is algebraic
estimation of candidate model outputs, as commonly per-
formed in symbolic regression (Bongard & Lipson, 2007;
Schmidt & Lipson, 2009). In algebraic evaluation of mod-
els, states are estimated from the measured output (by differ-
entiation and/or integration together with various smooth-
ing functions) to yield x̃ = [x̃1, . . . , x̃n]T . The estimated
output of the candidate model can then be the state rep-
resented by the model; e.g., ˆ̈x in the harmonic oscillator
of Equation (3). In this configuration, the estimated output
finds the form

ŷ(tk) = M̂� = �T M(x̃(tk), ũ(tk)) (6)

and the prediction error will have the form

ε(tk) = y(tk) − ŷ(tk) = �̃T M∗ − �̃T M̂ (7)

where ũ are the inputs used to produce the measured ob-
servations y(tk). In algebraic evaluation, therefore, model
validation is a static test in which the state variables are
independent of the model structure and the dependent vari-
able is the modelled variable defined algebraically by the
candidate model being evaluated. Referring back to the
harmonic oscillator of Equation (3), if the measured vari-
able is the displacement x̃(tk), then it can be used to esti-
mate the model velocity ˙̃x(tk) by numerical differentiation
and, say, piece-wise cubic interpolation and LOESS (lo-
cally weighted regression) smoothing (Cleveland & Devlin,
1988) to cope with noise and differentiation errors. Now if
the candidate model M̂ = [ẋ, x, u(t)]T is the linear form
of the harmonic oscillator, and the nominal parameter val-
ues are considered to be �̃ = [− c̃

m̃
, − k̃

m̃
, 1

m̃
]T , then the

model output is estimated as

ŷ(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk) − k̃

m̃
x̃(tk) + 1

m̃
ũ(tk)

and the prediction error is

ε(tk) = − c∗

m∗
˙̃x(tk)| ˙̃x(tk)| + c̃

m̃
˙̃x(tk) − k∗

m∗ x̃(tk)3 + k̃

m̃
x̃(tk) + ν

Therefore, the prediction error is not only offset by noise,
but also by the inaccuracy of the model form; i.e., M̂ �= M∗

and the parametric error, �̃� = �∗ − �̃.

3. The model structure adaptation method

In MSAM, each component is adapted symbolically with
the objective of improving the fitness of the model. To this

end, a two-stage adaptation strategy is implemented. In the
first stage, a comprehensive set of component adjustments
is tested after iterative adaptation to select the ‘best candi-
date model’. In the second stage, this best candidate model
is adapted further to improve the fitness of the model. The
salient features of MSAM are (1) its unintrusive adjust-
ment scheme which keeps the original model structure in-
tact and conducive to interpretation after adaptation, (2) its
use of gradient-based search for improved efficiency over
the stochastic search conducted in symbolic regression, (3)
its capacity to measure the model change magnitude to
accommodate gradient-based search in presence of para-
metric error, and (4) its ability to find the correct model
structure despite parametric inaccuracy.

3.1. Adaptation strategy

In MSAM, the candidate models are formed by adjusting
each model component as

M̂i =⇒ M̃i f̂i(x̃, ũ)γi (8)

to yield the candidate model

M̂�̃ =
Q∑

i=1

θ̃iM̃i f̂i(x̃, ũ)γi = �̃T M̂ (9)

where M̂ = [M̃1f̂1(x̃, ũ)γ1 , . . . , M̃Qf̂Q(x̃, ũ)γQ ]T , the f̂i

are functions of individual state variables or inputs con-
sidered to improve the model form, and the γ i are ex-
ponents to achieve two goals: (1) to mitigate the discrete
nature of the introduced model change, and (2) to provide a
mechanism for calibrating the degree of change to individ-
ual model components for higher granularity. For instance,
to achieve M̃ = ˙̃x =⇒ M̃f ∗(x̃, ũ) = ˙̃x| ˙̃x|, the adjustment
needs to be f̂ (x) = | ˙̃x|1.0. Assuming that the true model can
be reached by the introduction of candidate adjustments f̂

to the initial model M̃, the true model will have the form
M∗ = [M̃1f

∗
1 (x̃, ũ)γ

∗
1 , . . . , M̃Qf ∗

Q(x̃, ũ)γ
∗
Q ]T . The adapta-

tion strategy, hence, entails applying adjustments of the
form (8) to individual components of the model M̃ and
then adapting the exponents γ i to fine-tune the model
structure. The goal of MSAM is to first find the form
f̂ = [f̂1(x̃, ũ), . . . , f̂Q(x̃, ũ)]T , that will match the cor-
rect form f∗ = [f ∗

1 (x̃, ũ), . . . , f ∗
Q(x̃, ũ)]T and then adapt

the exponents γ i, to achieve � = [γ1, . . . , γQ]T =⇒ �∗ =
[γ ∗

1 , . . . , γ ∗
Q]T .

The proposed adaptation strategy, as outlined above,
is therefore tailored to starting models with missing
couplings. Even though such models may constitute only a
subset of non-linear models to be envisioned for a process,
they encompass considerable non-linear capacity. Indeed
the method could be enhanced in reach by the added
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252 W.G. La Cava and K. Danai

provision of introducing new components to the original
model. However, that is beyond the premise of the method
which is aimed at refining starting models with adequate
components to capture the phenomenological aspects of
the process. After all, for a more flexible and expanded
model structure one could resort to symbolic regression
independent of any structural constraints of the starting
model. Another requirement of the proposed method is the
set of functions f to be introduced into the starting model.
While the method does not pose any limitation to the
number of functions to be considered, its computational
effort will be increased with the larger number of candidate
models produced by the expanded set of functions. Given
n functions and Q components, the number of possible
candidate models would be Qn. Fortunately, the adaptation
of individual candidate models can be performed indepen-
dently of each other, making parallel execution possible.

Given that finding the correct structural change f∗(x̃, ũ)
transcends adaptation of the corresponding exponents, the
first stage of adaptation in MSAM comprises a round robin
competition between candidate models of the form (9), af-
ter a limited number of exponent adaptations, according
to a fitness function of the prediction error (Equation (7)).
For gradient-based adaptation in the round robin stage, the
target output y(t) can be defined by its first-order approxi-
mation at the nominal parameter values θ̃i , and exponents
γ̂i , as

y(t) ≈ ŷ(t, M̂, �̂, �̃) +
Q∑

i=1

�̃θ i

(
∂ŷ(t, M̂, �̂, �̃)

∂θi

)

+
Q∑

i=1

�̂γ i

(
∂ŷ(t, M̂, �̂, �̃)

∂γi

)
(10)

where �̃θ i = θ∗
i − θ̃i and �̂γ i = γ ∗

i − γ̂i . The above ap-
proximation holds when the structure of the candidate
model provides a close first-order approximation of the
target output and the partial derivatives of ŷ are reasonably
close to the corresponding partial derivatives of y.

Ideally, one would want to adapt both the coefficients
θ i and exponents γ i for each candidate model M̂ during the
round robin phase with the objective of identifying the cor-
rect model form. However, potential collinearity between
θ i/γ i pairs often hinders their concurrent adaptation, forc-
ing one to adapt the one with the larger influence on the
prediction error. As is discussed in the next section, since
the exponents (in the absence of bifurcation) have the larger
influence on the prediction error, they are the preferred tar-
get for adaptation. Therefore, an underlying assumption of
MSAM is that a candidate model with the correct func-
tion adjustments f̂ = f∗ will have the best fitness relative
to other candidate models after adaptation despite the para-
metric error �̃�.
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ẍ = −μ1x
2ẋ + μ2ẋ −μ3x

ΔΘ = ±100%Θ∗

ΔΘ = ±100%Θ∗

ΔΘ = ±100%Θ∗

ẍ = −μ1x
3/2ẋ + μ2ẋ −μ3x

ẍ = −μ1x
2ẋ + μ2ẋ

2 −μ3x
ẍ = −μ1x

2ẋ + μ2xẋ −μ3x
ẍ = −μ1x

2ẋ + μ2ẋ −μ3x|x|

ẍ = 1/m(−cẋ|ẋ|−kx3 + u)
ΔΘ = ±100%Θ∗

ΔΘ = ±100%Θ∗

ΔΘ = ±100%Θ∗

ẍ = 1/m(−cẋ −kx + u)
ẍ = 1/m(−cẋ|ẋ|−kx + u)
ẍ = 1/m(−cẋ −kx3 + u)

Figure 1. Displacements of the harmonic oscillator (left) and the
van der Pol oscillator (right) with different parameter values and
structures.

3.2. Precedence of structural error to parametric
error

Albeit anecdotal, the prominence of exponents γ i over the
coefficients θ i in MSAM is shown via two examples in
Figure 1. The two models are those of the harmonic os-
cillator (left plots) and the van der Pol oscillator (right
plots). The plots show the displacements of the two mod-
els with different structures and parametric error levels,
computed as �� = ∑Q

i=1 |θ∗
i − θ̃i |/θ∗

i . Even though three
parameters are defined for the van der Pol oscillator, to pro-
vide breadth for parameter variation, the parameters of the
nominal model (ẍ = −η1x

2ẋ + η2ẋ − η3x) are defined as
η1 = η2 and η3 = 1 to match the standard van der Pol os-
cillator form (ẍ = ηẋ(1 − x2) − x). The results in Figure 1
indicate that both oscillators’ displacements are similar in
shape with even 100% total parameter error, whereas they
differ drastically in shape when their structures change.
The exception is the displacement of the oscillator on the
right from the model (ẍ = −η1x

2ẋ + η2ẋ − η3x|x|) which
is very similar to that of the van der Pol oscillator having
erroneous parameter values. At these erroneous parameter
values, there will be little distinction between the correct
and incorrect structures, making it difficult to identify the
correct form.

There are three observations to be made of the results
in Figure 1. One is that the models’ responses are affected
more drastically by the structure than the parameter values.
This gives credence to prioritising exponent adaptation
over parameter estimation. The second observation is
that the shape of the responses is a better indicator of
structural differences than their magnitudes. The model
response shapes are incorporated in the evaluation of
models by including the correlation coefficient between the
models’ responses and their targets in the fitness function.
Consideration of output shapes in model evaluation is
shown to improve the capacity for structure search in the
presence of erroneous parameters and as a precursor to
parameter estimation. The third observation corresponds
to the drastic difference of model responses due to the
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discrete nature of structural differences in Figure 1.
Since such drastic differences would be detrimental to
gradient-based adaptation, they are mediated by insertion
of exponents into the models so as to regulate the size of
adaptation.

3.3. Scaling of model changes

The prominence of structural accuracy to parametric accu-
racy and the difficulty in concurrent parameter and exponent
estimation motivate focusing adaptation on the exponents,
rendering the prediction error with the form

ε(t) = y(t) − ŷ(t, M̂, �̃) − εθ

≈
Q∑

i=1

�̂γ i

(
∂ŷ(t, M̂, �̃)

∂γi

)
= εγ = �γ �̂� (11)

where εθ denotes the parametric error approximated by its
first-order expansion as

εθ ≈
Q∑

i=1

�̃θ i

(
∂ŷ(t, M̂, �̃)

∂θi

)
≈ �θ�̃� (12)

and

�γ =

⎡
⎢⎢⎣

∂ŷ(t1, M̂, �̃)/∂γ1 . . . ∂ŷ(t1, M̂, �̃)/∂γQ

...
. . .

...

∂ŷ(tN , M̂, �̃)/∂γ1 . . . ∂ŷ(tN , M̂, �̃)/∂γQ

⎤
⎥⎥⎦
(13)

Success of adaptation in MSAM, therefore, relies on
the quality of �γ in Equation (11). Two factors can de-
grade the estimation of �γ : (1) the presence of parametric
error, εθ , as a bias in the prediction error, and (2) the non-
uniformity of the columns of �γ . As to the first factor,
although the parameter error �̃� remains constant during
adaptation, the parameter sensitivity matrix �θ varies as a
function of �̂. This variation causes the bias due to εθ to be
non-constant during adaptation, hence, a shift in the gradi-
ent of the objective function. The second factor, namely the
non-uniformity of the columns of �γ , stems from the non-
uniformity of structural changes (fi(x, u))γi . Unlike typical
parameter perturbations that are applied to non-zero param-
eter values, the values of γ i initialise at zero to modulate
the introduction of functions. As such, their perturbations
can have drastic effects on the outputs of the candidate
models.

One possible approach to improving the condition of
�γ is to scale the columns of �γ (Bates & Watts, 1988)
by the magnitude of model difference caused by the pertur-
bation δγ i. We quantify the model difference magnitude in

terms of parameter sensitivity, according to the following
definition.

Definition: The difference between two models of the
same structure but a different exponent; i.e., M2 = M̂(� +
�γi) and M1 = M̂(�) is quantified by the sum of the 
2-
norm of their parameter sensitivity difference over time,
as

�(M2, M1) =
N∑

k=1

∣∣∣∣
∣∣∣∣∂ŷ(tk, M2, �̃)

∂�
− ∂ŷ(tk, M1, �̃)

∂�

∣∣∣∣
∣∣∣∣
2

(14)

where �(M2, M1) is the model difference magnitude,
∂ŷ/∂� = [

∂ŷ/∂θ1, . . . , ∂ŷ/∂θQ

]
is the vector of param-

eter sensitivities at time tk, and 
2-norm for the vector

v = [v1, . . . , vn]T ∈ R
n is defined as ||v||2 =

√∑n
i v2

i =
(vT v)

1
2 .

For clarification of the above definition, consider the
three harmonic oscillator models of increasing complex-
ity below wherein the acceleration of each model is the
estimated output obtained algebraically according to the
measured displacement x̃(tk).

ŷ1(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk) − k̃

m̃
x̃(tk) + 1

m̃
ũ(tk);

M1 = [
˙̃x(t), x̃(t), ũ(t)

]T

ŷ2(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)| ˙̃x(tk)| − k̃

m̃
x̃(tk) + 1

m̃
ũ(tk);

M2 = [
˙̃x(t)| ˙̃x(t)|, x̃(t), ũ(t)

]T

ỹ3(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)| ˙̃x(tk)|2 − k̃

m̃
x̃(tk) + 1

m̃
ũ(tk);

M3 = [
˙̃x(t)| ˙̃x(t)|2, x̃(t), ũ(t)

]T

Admittedly, M3 is more complex (denoted by ⇑) than M2,
which is more complex than M1; i.e., M3⇑M2⇑M1. Then
according to the above definition, the model difference
magnitude �(M3, M1) should be as large or larger than
�(M2, M1) as quantified by the norm of their parameter
sensitivity differences; i.e.,

�(M3, M1) ≥ �(M2, M1)

=⇒
N∑

k=1

∣∣∣∣
∣∣∣∣∂ŷ(tk, M3, �̃)

∂�
− ∂ŷ(tk, M1, �̃)

∂�

∣∣∣∣
∣∣∣∣
2

≥
N∑

k=1

∣∣∣∣
∣∣∣∣∂ŷ(tk, M2, �̃)

∂�
− ∂ŷ(tk, M1, �̃)

∂�

∣∣∣∣
∣∣∣∣
2
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The above inequality can be confirmed analytically, as

∣∣∣∣
∣∣∣∣∂ŷ(M3, �̃)

∂�
− ∂ŷ(M1, �̃)

∂�

∣∣∣∣
∣∣∣∣
2

=
√[

˙̃x(t)| ˙̃x(t)|2 − ˙̃x(t)
]2 ≥∣∣∣∣

∣∣∣∣∂ŷ(M2, �̃)

∂�
− ∂ŷ(M1, �̃)

∂�

∣∣∣∣
∣∣∣∣
2

=
√[

˙̃x(t)| ˙̃x(t)| − ˙̃x(t)
]2

It should be noted here that the symbolic form of parameter
sensitivities, shown here for conceptual verification of the
above definition, is not necessary for computation of the
model difference magnitude, since it can be readily obtained
numerically.

As discussed earlier, the model difference magnitude
is defined to measure model changes affected by perturba-
tions to the exponents γ i in Equation (9). To this end, the
model difference magnitude is computed for the perturbed
model resulted from an exponential perturbation δγ i and
normalised to render the ‘model perturbation magnitude’
δMi as

δMi =
∑N

k=1

∣∣∣∣∣∣ ∂ŷ(tk ,�̂+δγi ,�̃)
∂�

− ∂ŷ(tk ,�̂,�̃)
∂�

∣∣∣∣∣∣
2∑N

k=1

∣∣∣∣∣∣ ∂ŷ(tk ,�̂,�̃)
∂�

∣∣∣∣∣∣
2

(15)

The scaling of structural sensitivity by δMi then takes the
form

∂ŷ(t, �̂, �̃)

∂γi

≈ ŷ(t, �̂ + δγi, �̃) − ŷ(t, �̂, �̃)

δMi

(16)

wherein the δMi are used in place of δγ i in the denominator
of the finite difference approximation of the output sensitiv-
ity. The availability of the Jacobian �γ enables estimation
of the exponential errors �γ i according to NLS, as

�̂� = [�̂γ 1, . . . , �̂γ Q]T = (�T
γ �γ )−1�T

γ εN (17)

and consequent adaptation of the exponents, as

γi(q + 1) = γi(q) + μ(q)�γi(q) (18)

where q is the iteration number and μ(q) is the adaptation
step size, determined at each iteration (see Section 4.2).

4. Algorithmic implementation

Given the adjustment strategy in Equation (8), adaptation
in MSAM entails finding the adjustments f∗ and their expo-
nents γ i∗. To this end, adaptation is performed in two stages,
wherein improvement of the candidate model(s) is attained
through adaptation of the exponents γ i. In the first stage,
using a round robin format, all possible candidate mod-
els are adapted for their viability of improving the model’s
accuracy with a nominal number of exponent adaptations.
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Figure 2. Illustration of candidate model selection by MSAM
in the round robin stage, followed by further adaptation of the
selected model in the second stage, as represented by the inverse
of the fitness value for each model.

Given n adjustments and Q components, the number of can-
didate models would equal Qn. The underlying assumption
of the round robin stage is that the candidate model with the
correct adjustments f = f∗ will achieve the best fitness in
a fixed number of iterations. Therefore, there is always the
possibility that MSAM may not find the correct adjustment
set because of the limited number of iterations used in the
round robin stage. In the second stage, the winner combi-
nation is further adapted via its exponents to enhance the
model’s accuracy.

The adaptation strategy is described in Algorithm 1.
Adaptation begins by evaluating the candidate models,
composed of unique sets of adjusted components, in a round
robin fashion. At the end of the round robin stage, the can-
didate model associated with the best fitness is chosen for
further adaptation in the second stage. For illustration pur-
poses, selection of the best candidate model of the harmonic
oscillator in the first stage, followed by its adaptation in the
second stage, is shown in Figure 2. The plots in the first
stage represent the fitness values of the candidate mod-
els during the first 15 iterations of adaptation. The inferior
models are discarded for the second stage where adaptation
is continued for the best-fit model.

4.1. Fitness function

The fitness function is used mainly to distinguish between
the candidate models. Since MSAM emphasises structural
adaptation, it requires a fitness criterion that is more sen-
sitive to structural error than parametric error. A signifi-
cant indicator of the model structure is the shape of the
model output, as was observed in Figure 1. Therefore, in-
cluded in the fitness function is the correlation coefficient
between the model’s output and its target so as to represent
the closeness of the output’s shape to its target (Billings
& Zhu, 1994; Kommenda, Kronberger, Winkler, Affen-
zeller, & Wagner, 2013). Accordingly, the fitness function in
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Algorithm 1 Model structure adaptation algorithm
1: Q ←− number of model compartments in M̂

2: n←− number of states (order of the system)
3: R ←− Qn

4: M̂ ←− candidate model
5: ξ ←− round robin iteration
6: y ←− target output
7: ŷξ ←− current round robin model output
8: M̂ξ∗ ←− best round robin model
9: M̂cb ←− current best model

10: M̂best ←− final best model
11: I1 ←− number of round robin iterations
12: I2←− numberof winner iterations
13: F (ŷcb, y) ←− F (ŷ, y)
14: Estimatex̃
15: for ξ ∈ R do � Round robin
16: fξ (x̃, ũ) ←− choose set of function perturbations
17: �̂ξ = 0
18: M̂ξ ←− ∑Q

i=1 θ̃iM̃ifi(x̃, ũ)γi � Perturb model
compartments

19: for j ∈ I1 do � Adapt model ŷξ

20: Calculate �γ (ŷξ )
21: Update �̂ξ

22: Evaluate ŷξ

(
�̂ξ

)
23: if F (ŷξ , y) > F (ŷcb, y) then
24: ŷcb ←− ŷξ

25: f∗(x̃, ũ) ←− fξ (x̃, ũ) � Save best set of
function perturbations

26: end if
27: end for
28: end for
29: ŷξ∗ ←− ŷcb

30: F (ŷcb, y) ←− F (ŷ, y)
31: for j ∈ I2 do � Adapt winning model ŷξ∗

32: Calculate �γ (ŷξ∗ )
33: Update �̂ξ∗

34: Evaluate ŷξ∗
(
�̂ξ∗

)
35: if F (ŷξ∗ , y) > F (ŷcb, y) then
36: M̂cb ←− M̂ξ∗

37: end if
38: end for
39: M̂best ←− M̂cb

MSAM is defined as

F = ρ(ŷ, y)∑N
k=1 |ε(tk)| (19)

where ρ(ŷ, y) denotes the correlation coefficient between
the model’s output ŷ and its target y, computed as ρ(ŷ, y) =
Cŷy/σŷσy where Cŷy is the covariance of ŷ and y, and
σ denotes standard deviation. The larger the fitness value

the closer the model is to its target, therefore, this fitness
function is used primarily to evaluate the fitness of various
candidate models in the first stage of adaptation by MSAM.

4.2. Selection of adaptation step size

The adaptation step size μ in Equation (18) specifies the
confidence in the estimate of �̂� from Equation (17). Since
this estimate is based on the approximation of the predic-
tion error in Equation (11), its fidelity can be assessed by
the accuracy of the prediction error approximation. As a
measure of this accuracy, we use the correlation coefficient
between the error and its first-order approximation (i.e., the
two sides of Equation (11)) to characterise the closeness
of approximation of the error shape by the estimated εγ .
Accordingly, the adaptation step size at the iteration q is
computed as

μ(q) = ρ
(
εN (q), ε̂γ (q)

)
(20)

where εN = [ε(t1), . . ., ε(tN)]T.

5. Application examples

The performance of MSAM is evaluated in two categories:
(1) controlled tests, wherein the target model is known and
the target data are the simulated output of this model used
in lieu of measured observations, and (2) real-world tests,
wherein the target model is unknown and the measured ob-
servations are obtained experimentally. The first tests are in-
tended to examine whether the true underlying model forms
can be attained by adaptation. The second tests demonstrate
the applicability of the approach to real systems where there
are no true models and the preferred models are those that
minimise the prediction error.

5.1. Controlled tests

For the controlled validation of the method, three non-linear
models of increasing non-linearity and order are adapted
from simpler starting models. The first model is that of the
non-linear harmonic oscillator, which has been used thus
far to illustrate various aspects of the method. It has two
model components (Q = 2) and two variables (n = 2),
generating a round robin size of Qn = 22 = 4. The second
model is that of the van der Pol oscillator, consisting of three
components (Q = 3) and two variables (n = 2). It not only
has a larger round robin size than the harmonic oscillator (32

= 9) but also a non-linear coupling of velocity and position
that needs to be identified. The third model is a third-order
state-space model, where each state equation comprises
three non-linear components. As such, this model poses a
round robin size of 27 with heavily coupled components in
each state equation.
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256 W.G. La Cava and K. Danai

Table 1. The three models sought by MSAM in the controlled tests.

Harmonic oscillator van der Pol oscillator Third-order model

Target model ẍ = − c
m
ẋ|ẋ| − k

m
x3 + 1

m
u(t) ẍ + η(x2 − 1)ẋ + x = 0

ẋ1 = θ1x1x3 + θ2x2x3 + θ3x
2
3

ẋ2 = θ4x1x2 + θ5x1x3 + θ6x2x3

ẋ3 = θ7x1x2 + θ8x1x3 + θ9x2x3

Starting model ẍ = − c
m
ẋ − k

m
x + 1

m
u(t) ẍ + η1ẋ − η2ẋ + η3x = 0

ẋ1 = θ̃1x1 + θ̃2x2 + θ̃3x3

ẋ2 = θ̃4x1 + θ̃5x3 + θ̃6x2

ẋ3 = θ̃7x1 + θ̃8x3 + θ̃9x2

Parameter values

⎡
⎣m∗

c∗

k∗

⎤
⎦ =

⎡
⎣ 375

9800
130, 000

⎤
⎦

⎡
⎣ η∗

1
η∗

2
η∗

3

⎤
⎦ =

⎡
⎣ 1.5

1.5
1

⎤
⎦ [θ∗

1 , θ∗
2 , θ∗

3 ]T = [−3, −2, −3]T

[θ∗
4 , θ∗

5 , θ∗
6 ]T = [−3, 1, −3]T

[θ∗
7 , θ∗

8 , θ∗
9 ]T = [3, 3, −1]T

Excitation Step input x(0) = [0, −1] x(0) = [5, 0, 1]

Perturbance functions {| ˙̃x|, |x̃|} {|x̃|, | ˙̃x|} {x1, x2, x3}

The three models sought by MSAM are shown in
Table 1 along with the starting models, parameter values,
inputs, and perturbation functions. The harmonic oscilla-
tor consisted of three components, two of which needed
to be adapted to their counterparts in the target model as
M̃1 = ˙̃x =⇒ M∗

1 = ˙̃x| ˙̃x|γ1 and M̃2 = x̃ =⇒ M∗
2 = x̃γ2 .

For the van der Pol oscillator, the goal was to adapt its
first component to η1x̃

2 ˙̃x, leaving the other two compo-
nents practically untouched. To guarantee real-valued out-
puts for the third-order system, the perturbations were ap-
plied as sign(fi(x̃, ũ))|fi(x̃, ũ)|γi . For this model, the three
state variables were assumed to be accessible.

For algorithmic details, let us consider the adapta-
tion of the harmonic oscillator model, in which the op-
tions to be considered for adaptation of the first and sec-
ond components were M̂1 : ˙̃x −→ ˙̃x|x̃|γ1 and ˙̃x −→ ˙̃x| ˙̃x|γ1

and M̂2 : x̃ −→ x̃|x̃|γ2 and x̃ −→ x̃| ˙̃x|γ2 . Each of the four
models formed from the above options were adapted itera-
tively by adjusting the exponents γ 1 and γ 2 in 15 iterations.
The best model form selected at the end of this first (round
robin) stage was further adapted, by improving the expo-
nents γ 1 and γ 2 over 70 more iterations. Adaptation tests
were performed with parametric errors ranging from 0% to
200% of the true parameter values. A sample of initial and
final outputs before and after structural adaptation is shown
in Figure 3. The left plots show the outputs ̂̈x of the starting
model at different levels of parameter error together with
the target output (note that the increased error in m provides
the counterintuitive effect of bringing the starting model
output closer to the target). The right plots compare with
the target output the outputs of the adapted models at vari-
ous parametric error levels. The results clearly indicate the
effectiveness of MSAM in producing models with outputs
that are very close to the target output despite parametric
error levels up to 100%.

Even though we use the fitness value as the surrogate,
the real goal is the fidelity of the adapted model. To eval-
uate the reproducibility and accuracy of the model forms
achieved by MSAM, 10 adaptation trials were performed
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Figure 3. Sample of outputs (i.e., ˆ̈x) before (left) and after adap-
tation (right) by MSAM of the non-linear harmonic oscillator at
three levels of parametric error. The starting model in all cases
was ẍ = 1

m̃
(−c̃ẋ − k̃x + u).

for each of the models with randomly generated parameters
at various parametric error levels. The results obtained from
these trials at parametric error levels of 0%, 25%, and 50%
are shown in Table 2 for the harmonic and van der Pol oscil-
lators, and in Table 3 for the third-order model. These tables
show the error minimisation capacity of MSAM, in terms
of the prediction error and correlation coefficient between
the estimated and target outputs, and the median final model
obtained for each error level. The results indicate that even
though the fitness value is influenced by parametric error,
the correct model form (f̂ = f∗) is achieved in all cases.
The main difference between these models is in exponent
values of the final models attained, which deviate from their
correct values in accordance with the corresponding para-
metric error level. Noteworthy in the results is the high
level of correlation achieved for the final model outputs
at all levels of parameter error (ρ > 0.999). The fact that
this level of success is not shared by the prediction error
validates the lower sensitivity of output shape to parametric
error and gives credence to the importance of including the
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Table 2. Performance of MSAM for the non-linear harmonic oscillator and van der Pol oscillator in terms of the components of the
fitness function (i.e., prediction error and correlation coefficient between the estimated and target outputs) and the model forms achieved
for different levels of parameter error. The results are from 15 round robin iterations and 70 final choice iterations for the harmonic
oscillator and 10 round robin iterations and 75 final choice iterations for the van der Pol oscillator. Ten trials runs were performed at each
error level with the parameter values randomly selected. The ± quantities are the standard deviations over the trials.

Starting Final

��
∑

|ε(t)| ρ( ¨̃x, ˆ̈x)
∑

|ε(t)| ρ( ¨̃x, ˆ̈x) Median final model

Harmonic oscillator

Starting model: m̃ẍ + c̃ẋ + k̃x = u(t) Target model: m∗ẍ + c∗ẋ|ẋ| + k∗x3 = u(t)

0% �∗ 3780 0.7690 0.0534 0.9999 m̃ẍ + c̃ẋ|ẋ|1.00 + k̃x3.00 = u(t)
25% �∗ 3685±530 0.769±0.01 0.359±0.25 1.000±0.00 m̃ẍ + c̃ẋ|ẋ|0.984 + k̃x2.991 = u(t)
50% �∗ 3603±1049 0.772±0.02 0.689±0.43 0.999±0.00 m̃ẍ + c̃ẋ|ẋ|0.966 + k̃x2.973 = u(t)

van der Pol oscillator

Starting model: ẍ = −η̃1ẋ + η̃2ẋ − η̃3x Target model: ẍ = −η∗
1x

2ẋ + η∗
2 ẋ − η∗

3x

0% �∗ 276.12 0.446 5.8256 0.9997 ẍ = −η1|x|2.02ẋ + η2ẋ − η3x|ẋ|0.03

25% �∗ 193.5 ±8.393 0.394 ±0.053 25.484 ±5.524 0.995 ±0.003 ẍ = −η̂1|x|1.934ẋ + η̂2ẋ|x|0.0226 − η̂3x|ẋ|0.0634

50% �∗ 205.0 ±21.19 0.250 ±0.0788 37.784 ±13.700 0.9914 ±0.00545 ẍ = −η̂1|x|2.355ẋ + η̂2ẋ
1.132 − η̂3x|ẋ|−0.046

Table 3. Performance of MSAM for the three-variable set of ordinary differential equations (SODE) in terms of the components of the
fitness function (i.e., prediction error and correlation coefficient between the estimated and target outputs) and the model forms achieved
for different levels of parameter error. Ten trials runs were performed at each error level with the parameter values randomly selected.
The results are from 15 round robin iterations and 100 final choice iterations for states 1 and 2, and 40 round robin iterations and 60 final
choice iterations for state 3.

Starting Final

��
∑

|ε(t)| ρ( ˙̃xi, ˆ̇xi)
∑

|ε(t)| ρ( ˙̃xi, ˆ̇xi) Success rate Median final model

Starting model: ẋ1 = θ̃1x1 + θ̃2x2 + θ̃3x3 Target model: ẋ1 = θ∗
1 x1x3 + θ∗

2 x2x3 + θ∗
3 x2

3

0% �∗ 3043.217 0.763 403.833 0.993 100% ˆ̇x1 = θ̃1x1x
1.16
3 + θ̃2x2x

0.26
3 + θ̃3x

2.01
3

25% �∗ 3300.194 ±240.851 0.743 ±0.046 440.222 ±120.129 0.998 ±0.002 100% ˆ̇x1 = θ̃1x1x
1.13
3 + θ̃2x2x

0.57
3 + θ̃3x

2.03
3

50% �∗ 3656.362 ±509.102 0.719 ±0.091 747.273 ±239.304 0.995 ±0.017 80% ˆ̇x1 = θ̃1x1x
1.09
3 + θ̃2x2x

0.35
3 + θ̃3x

2.13
3

Starting model: ẋ2 = θ̃4x1 + θ̃5x3 + θ̃6x2 Target model: ẋ2 = θ∗
4 x1x2 + θ∗

5 x1x3 + θ∗
6 x2x3

0% �∗ 5890.721 0.127 49.201 1.000 100% ˆ̇x2 = θ̃4x1x
1.10
2 + θ̃5x

0.99
1 x3 + θ̃6x2x

1.10
3

25% �∗ 5966.269 ±362.675 0.12672 ±0.019 121.934 ±47.0814 0.998 ±0.0007 100% ˆ̇x2 = θ̃4x1x
1.11
2 + θ̃5x1x

0.98
3 + θ̃6x2x

1.01
3

50% �∗ 6062.185 ±730.500 0.124 ±0.038 230.341 ±107.928 0.994 ±0.015 90% ˆ̇x2 = θ̃4x1x
1.17
2 + θ̃5x1x

0.87
3 + θ̃6x2x

0.92
3

Starting model: ẋ3 = θ̃7x1 + θ̃8x3 + θ̃9x2 Target model: ẋ3 = θ∗
7 x1x2 + θ∗

8 x1x3 + θ∗
9 x2x3

0% �∗ 4914.037 0.498 88.991 0.999 100% ẋ3 = θ̃7x1x
1.10
2 + θ̃8x

1.10
1 x3 + θ̃9x2x

0.61
3

25% �∗ 4795.186 ±375.625 0.508 ±0.033 118.5305 ±29.0678 0.998 ±0.001 100% ˆ̇x3 = θ̃7x1x
1.12
2 + θ̃8x

1.07
1 x3 + θ̃9x2x

0.52
3

50% �∗ 4683.273 ±730.797 0.518 ±0.063 166.507 ±76.351 0.996 ±0.004 100% ˆ̇x3 = θ̃7x1x
1.12
2 + θ̃8x

1.04
1 x3 + θ̃9x2x

0.48
3

correlation coefficient in the fitness function (see Equa-
tion (19)). Noteworthy are the results for the van der Pol
oscillator, which indicate that the first component of the
final model closely approximates its target (η1x

2ẋ), despite
the presence of parametric error. The small exponents asso-
ciated with the other component adjustments render them
negligible. Also noteworthy are near unity values of the cor-

relation coefficients in Table 2 between the final model out-
puts and the target, indicating the lower sensitivity of output
shapes to parametric error. Contrary to the correlation coef-
ficient, the prediction error is sensitive to parametric error,
as represented by its larger final values at higher paramet-
ric error levels. As to the third-order model, the third state
required a higher number of round robin iterations (40) to
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Figure 4. Progression of the outputs towards their van der Pol os-
cillator output target as the model structure is continually adapted
by MSAM. The starting model was ẍ = −η̃1ẋ + η̃2ẋ − η̃3x with
the parameters randomly selected within the parametric error
range.

robustly select the correct model structure in the presence
of parametric error. With the 15 iterations initially used to
adapt this state model, MSAM consistently chose the wrong
adjustment for its third component. Conversely, the 40 it-
erations in the round robin stage were adequate to produce
consistently correct models at all parametric error levels.

Crucial to the success of MSAM is selection of the cor-
rect model form at the end of the round robin stage. To test
this aspect of the performance of MSAM in presence of
parametric error, the initial round robin stage was repeated
for 50 sets of randomly generated parameters at each level
of parametric error up to 200%. Success was declared when
the correct model form in terms of adjustments (i.e., f = f∗)
was chosen at the end of the round robin stage. The suc-
cess rates for different levels of parametric error are shown
in Table 4. The results indicate that MSAM is completely
successful with parametric error levels of up to 50%, more
than 90% successful with up to 100% parametric error,
and more than 50% successful with up to 175% parametric
error. These results underscore the capacity of MSAM in
finding the correct model form despite considerable uncer-
tainty in the parameter values, thus obviating concurrent
search of both the structure and model parameters.

Even though secondary to proper model form selection,
an important aspect of MSAM is adaptation of the expo-
nents of the candidate model during the second stage. The
progression of the selected model outputs towards their
target for the van der Pol oscillator during second-stage
adaptation of the model structure by MSAM is shown in
Figure 4 for different levels of parametric error. The plots
clearly indicate the convergence of the outputs toward their
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Figure 5. Condition number of ��
T �� for various levels of

parametric error using the structural sensitivities in Equation (16)
with and without scaling by δMi. The condition number is calcu-
lated for 30 trials of nine iterations of MSAM at parametric error
levels of �̃� = 25%, 50%, and 100%. The error bars represent
standard deviation.

target despite different levels of parametric error. The only
distinction at higher parametric errors is the larger distance
between the final and target outputs.

Another important feature of MSAM is the use of δMi

from Equation (15) for scaling the columns of �γ . A direct
ramification of this scaling is the better quality of �γ , that
will result in better estimates of �̂� when used in Equa-
tion (17). The improved quality of �γ is illustrated through
its condition number (λmax/λmin), computed with and with-
out scaling by δMi at different levels of randomly generated
parametric errors (�̃�), as shown in Figure 5. The condi-
tion numbers in Figure 5 are much smaller for δMi-scaled
�γ , and given that the closer the condition number is to
unity the more separate (less collinear) are the columns of
the matrix (Jackson, 1991), the results in Figure 5 clearly in-
dicate the marked improvement in the quality of �γ scaled
by δMi. According to the results in Figure 5, not only are
the condition numbers nearly always lower for the scaled
�γ , but they are also much less sensitive to the parameter
error as evidenced by close to zero standard deviations at
different levels of parametric error.

5.2. Real-world tests

To test MSAM’s effectiveness in application to real-world
cases, target outputs from two sets of experimental data
were considered for construction of models. The first set

Table 4. Success rate of MSAM in finding the correct model form for the non-linear harmonic oscillator at different parametric error
levels. Results are reported at the end of the round robin stage from 50 trials of randomly generated parameter values within each parametric
error level.

��: 0% 25% 50% 75% 100% 125% 150% 175% 200%
Success rate 100% 100% 100% 96% 92% 72% 62% 52% 42%
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was experimental data obtained for flow-induced vibra-
tion of a slender beam. The second set was economic
data from the Federal Reserve Economic Data (FRED)
(http://research.stlouisfed.org/fred2/).

5.2.1. Flow-induced vibration

The area of fluid–structure interaction (FSI) offers a per-
tinent domain for non-linear modelling of coupled states.
Briefly, when a flexible or flexibly mounted structure is
placed in fluid flow, it can move due to the flow forces.
The structure’s motion changes the flow forces, which in
turn affect the structure’s motion, constituting an FSI prob-
lem. FSI is observed in wind turbines, offshore structures,
novel energy extraction ideas, and biomedical engineer-
ing, among others (e.g., Bearman, 1984; Blevins, 1990;
Paı̈doussis, 1998, 2004; Paı̈doussis, Price, & de Langre,
2004; Sarpkaya, 2004; Williamson & Govardhan, 2004).

For this case study, the experimental data were associ-
ated with a uniform cylinder placed in a re-circulating water
tunnel, with a test section of 1.27 m × 0.5 m × 0.38 m, a
turbulence intensity of less than 1% for up to a flow veloc-
ity of U = 0.08 m/s, and a velocity uniformity of less than
2% (Seyed-Aghazadeh, Budz, & Modarres-Sadeghi, 2015;
Seyed-Aghazadeh, Carlson, & Modarres-Sadeghi, 2015).
The set-up used to hold the cylinder in the test section had
two air bearings to reduce the damping and constrain the
oscillations of the cylinder to one degree of freedom in the
crossflow direction. Springs were attached from the sup-
porting plate holding the cylinder to the fixed housing. The
cylinder’s displacement and the corresponding flow forces
were simultaneously measured at a flow velocity of U =
0.076 m/s. The experimental data were split into training
and validation sets of 25 seconds in length.

The limit cycle characteristics of the dynamics asso-
ciated with the displacement, x, of the cylinder and the
applied force, q, motivate the use of the van der Pol os-
cillator model for representation of q, in lieu of solving
the Navier–Stokes equation. Accordingly, the FSI model is
considered to be (Facchinetti, de Langre, & Biolley, 2004)

(ms + 1/4πCMρD2)ẍ + [rs2πSt(U/D)ρD2]ẋ + hx

= 1/4ρU 2DCLoq (21)

q̈ + ε[2πSt(U/D)](q2 − 1)q̇ + [2πSt(U/D)]2q = (A/D)ẍ

(22)

where St is the Strouhal number, ms is the mass of the struc-
ture, ρ is the fluid density, rs represents viscous dissipation
in the support, γ denotes the stall parameter, U is the free
steam velocity, D is the cylinder’s diameter, CM is the added
mass coefficient, CLo is the lift coefficient, and ε and A are
the van der Pol scaling parameters.

0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

1

1.5

Data Point (k)

O
ut

pu
t

 

 

Measured y
Initial ŷ
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Figure 6. Adaptation of the van der Pol form for modelling
vortex-induced vibration. The output of the initial and adapted
models is shown against the validation data-set. The initial ŷ is
the van der Pol form (Equation (22)) with optimised parameters.
The form of the final ŷ is given in Table 5.

For this study, we focused our analysis on adaptation
of the van der Pol oscillator model approximating the vor-
tex force q (Equation (22)). We proceeded first by adapting
the model’s scaling parameters A and ε using NLS and
then used the resulting model as the starting model to be
adapted by MSAM. For this adaptation case, 20 round robin
iterations were used for selection of the best model, choos-
ing structural perturbations from the set

{ |q̈|, |q̇|, |q| }. The
best candidate model was further improved via 20 iterations
in the second stage. The resulting model had the form

(A/D)̂ẍ = ¨̃q| ˙̃q|γ1 + ε[2πSt(U/D)](q̃2| ˙̃q|γ2 − |q̃|γ3 ) ˙̃q

+ [2πSt(U/D)]2q̃|q̃|γ4 (23)

with γ 1 = −0.1178, γ 2 = −0.0023, γ 3 = 0.1036, and
γ 4 = 3.2329.

The results are summarised in Table 5 and the initial
and final models from MSAM are plotted against the vali-
dation data-set in Figure 6. The results indicate that whereas
parameter estimation of the original model only marginally
improves the accuracy of the original model, the structurally
adapted model is about 41.7% improved according to the
magnitude of the prediction error.

5.2.2. A macroeconomic model

The second practical case study was the dynamic model of
investment savings (IS) for the United States, which was
developed based on economic data from the FRED. The
nominal form of the IS model (Shone, 2002) is

ẏ(t) = α(e(t) − y(t)) α > 0 (24)

where e represents total expenditure and y income (gross
domestic product (GDP)).
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Table 5. Adaptation of the FSI force equation using experimental results for U = 0.076 m/s. The exponents are γ 1 = −0.1178, γ 2 =
−0.0023, γ 3 = 0.1036, and γ 4 = 3.2329.

Training Validation

Model
∑

|ε(t)| ρ( ¨̃x, ˆ̈x)
∑

|ε(t)| ρ( ¨̃x, ˆ̈x)

Original model: (A/D)̂ẍ = ¨̃q + ε[2πSt(U/D)](q̃2 − 1) ˙̃q + [2πSt(U/D)]2q̃ 246.53 0.751 243.69 0.769
Parameter-tuned original model 245.45 0.780 242.31 0.803
Adapted model: (A/D)̂ẍ = ¨̃q| ˙̃q|γ1 + ε[2πSt(U/D)](q̃2| ˙̃q|γ2 − |q̃|γ3 ) ˙̃q + [2πSt(U/D)]2q̃|q̃|γ4 136.54 0.890 141.22 0.897
Parameter-tuned adapted model 137.20 0.891 141.33 0.898

Table 6. Adapted IS model by MSAM (γ 1 = 0.7101 and γ 2 = −0.4419).

Training (1959–1989) Validation (1990–2008)

Model
∑

|ε(t)| ρ( ˙̃y, ˆ̇y)
∑

|ε(t)| ρ( ˙̃y, ˆ̇y)

Parameter-tuned original model: ̂̇y(t) = α̂(ẽ(t) − ỹ(t)) 4944.38 0.519 6361.00 -0.417
Adapted model: ̂̇y(t) = α̂(ẽ(t)γ1 − ỹ(t)|ỹ(t)|γ2 ) 678.40 0.973 2186.98 0.759

As in the previous case, the above model was parameter-
tuned first before being adapted as the starting model by
MSAM. The models were trained on historical data from
1959 to 1989, and validated against data from 1990 to 2008.
The final model had the form

̂̇y(t) = α̂(ẽ(t)γ1 − ỹ(t)|ỹ(t)|γ2 ) (25)

where ẽ represented the historical total expenditure data
and ỹ the historical income (i.e., GDP). Here, γ 1 = 0.7101
and γ 2 = −0.4419.

The fitness values of the model before and after adapta-
tion are shown in Table 6, which again indicate that struc-
tural adaptation via MSAM leads to better error minimi-
sation than parameter estimation on the nominal IS model
(Equation (24)). In addition, the adapted model extrapo-
lates better to unseen data, although some over-fitting can
be seen in both models. Parameter tuning of Equation (25)
did not yield any improvement in absolute error or correla-
tion, hence its omission from Table 6.

6. Discussion

The adaptation results presented above demonstrate the ef-
fectiveness of MSAM in refining the model topology in
presence of parametric uncertainty. The method is found
to be effective for parametric errors of up to 50% in the
case studies conducted. The error minimisation achieved
is significant in all cases, even when the best model topol-
ogy is not chosen due to large parametric errors. Yet the
presented results, while they validate MSAM’s adaptation
strategy, leave several issues to be addressed in future stud-
ies. Such issues include the range of MSAM’s capacity in
coping with parametric error, its computational scalability,

its ability to cope with structural collinearity, reachability
of potential model forms, consistency of model adaptation
across different target measurements, the choice of input
excitations, and the significance of measurement noise, as
briefly discussed below.

• Robustness to parametric error: in the adaptation
cases studied so far, MSAM could identify the correct
adjustments and adapt the corresponding candidate
model to nearly the exact model structure with para-
metric errors of up to 50%. The robustness of MSAM
to parametric uncertainty is contingent upon two fac-
tors: (1) that the shape of the candidate model outputs
not be substantially affected by parameter error (as
illustrated in Figure 1) and (2) the most accurate pa-
rameter values be used for the nominal parameters.
To enforce the first factor, the correlation coefficient
between the model output and its target is included
in the fitness function to underscore the significance
of output shapes in the model selection process. The
second factor can be satisfied by performing param-
eter estimation on the initial model with the hope of
improving the parameter values.

• Scalability: the scalability of MSAM was demon-
strated for systems of up to three adjustments ap-
plied to three model components. The main scalabil-
ity issue is the number of candidate models consid-
ered during the round robin stage. Given that with n
adjustments applied to Q components Qn candidate
models need to be examined during the round robin
phase, the selection process can become overwhelm-
ing if the models are examined sequentially. However,
candidate models can be evaluated separately and in-
dependently of each other. As such, the round robin
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phase can be run in parallel, reducing the compu-
tation time to Qn/p, with p processors used. Future
research could focus on techniques for choosing sub-
sets of round robin models of large-scale problems
that cannot be exhaustively searched.

• Collinearity: as a gradient-based method, least-
squares estimation depends on the non-singularity
of the underlying Jacobian. This condition is not
satisfied, for instance, seeking the Lotka–Volterra
model of inter-species population dynamics, shown
as the right-hand side model, using the starting model
shown in the left

ẋ = ãx − b̃y − c̃x =⇒ ẋ = ax − bxy − cx2

ẏ = ãy − b̃x − c̃y =⇒ ẏ = ay − bxy − cy2

With this starting model, the first and third columns
of the structural sensitivity matrix �γ (Equation (13))
will be collinear for both state equations, due to
the sole dependence of the first and third compo-
nents on x and y, respectively. Given that structural
adaptation of both components will be impossible in
such a case, a possible recourse would be a sequen-
tial approach wherein one component is adapted at
a time.

• Reachability: in general, MSAM is additive by na-
ture, designed to adapt the potentially inadequate
first-principles models of the system by the cou-
pling of functions to individual model components.
As such, this method is suited to starting models
that are less complex than their targets. Furthermore,
MSAM is conducted under the assumption that the
starting model comprises adequate components for
representing the system dynamics, therefore, it pro-
vides a sufficient basis for reaching the true model.
Accordingly, MSAM’s adaptation is restricted to ad-
justments made to the components of the starting
model. One could, indeed, extend the reach of MSAM
by expanding the components of the starting model
to allow for higher granularity of adjustments, as was
demonstrated in the adaptation of the van der Pol os-
cillator. However, one should be mindful of the fact
that such expansions may lead to violating the origi-
nal premise of MSAM as an efficient yet constrained
alternative to symbolic regression.

• Choice of input excitation: as in all system identifi-
cation cases, the suitability of the measured output
in representing the system is a requisite of search
for the true model. As such, the adapted model
is only as good as the measurements representing
the system. Since in practice one is limited to in-
put excitations that are applicable to the process, the
model should be adapted across all measurement sets
available from the process to enhance its general-
ity. A focus of our future research is the consistency

of adaptation by MSAM when faced with different
observations.

• Measurement noise: measurement noise impedes
adaptation by masking the true output of the pro-
cess (Equation (1)). It also affects algebraic evalua-
tion of candidate models by contaminating the nu-
merical estimates of derivatives of measured obser-
vations. Although noise can be addressed to some
extent by the application of smoothing and wavelet
transforms (McCusker, Currier, & Danai, 2011), its
presence can be as inhibiting as in other system iden-
tification methods.

7. Conclusion

A gradient-based method of model structure adaptation is
introduced for refinement of starting models of the pro-
cess. This method, which is designed to increase the non-
linearity of the starting model by adjusting its components,
uses exponents of the introduced adjustments to reduce their
coarseness as well as to make them conducive to gradient-
based search. This method relies on parameter sensitivity of
the model to quantify the magnitude of model perturbations
for scaling the structural sensitivities. This scaling practice
is shown to improve the condition number of the structural
sensitivity matrix, thus the search for the correct model
structure in presence of parametric uncertainty. Moreover,
since the proposed scaling method is independent of the
excitation input, it can be used with pre-calculated state
variables to preclude simulation-based evaluation of candi-
date models. Algebraic evaluation of candidate models has
the added benefits of allowing state equations to be adapted
independently, as in the third-order SODE; it is computa-
tionally cheaper than numerical integration; and is immune
to disruptions of simulation failures. The proposed method
is evaluated in controlled tests, wherein the true model is
known, as well as in application to real-world problems,
wherein the measure of success is solely the improved fit-
ness of the adapted model. The results indicate that MSAM
finds the correct form of the model in controlled tests de-
spite parametric errors of up to 50% and that it improves
the models’ fitness by a wide margin in its real-world ap-
plications.
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